
Efficient Hardware Implementations of
Grain-128AEAD

Jonathan Sönnerup, Martin Hell, Mattias Sönnerup, and Ripudaman Khattar

Dept. of Electrical and Information Technology, Lund University, Sweden
{jonathan.sonnerup, martin.hell}@eit.lth.se, syntaxnone@gmail.com,

ripudaman11@gmail.com

Abstract. We implement the Grain-128AEAD stream cipher in hard-
ware, using a 65 nm library. By exploring different optimization tech-
niques, both at RTL level but also during synthesis, we first target high
throughput, then low power. We reach over 33 Gb/s targeting a high-
speed design, at expense of power and area. We also show that, when
targeting low power, the design only requires 0.23 µW running at 100
kHz. By unrolling the design, the energy consumed when encrypting a
fixed length message decreases, making the 64 parallelized version the
most energy efficient implementation, requiring only 11.2 nJ when en-
crypting a 64 kbit message. At the same time, the best throughput/power
ratio is achieved at a parallelization of 4.

Keywords: Grain · stream cipher · ASIC · hardware design · NIST

1 Introduction

Due to the growth and widespread use of resource-constrained connected devices,
e.g., in the Internet of Things (IoT), the need for protection against security
threats has increased. RFID devices, smart cards, and sensor networks often
require low power consumption as they are driven by batteries. The cost of
manufacturing an IC chip is correlated to the area. Hence, area efficient designs
are needed to reduce the cost when producing large quantities. This puts a
demand, not only on the architectural design, but also on the implementation.
The implementation may vary largely depending on what techniques are being
utilized, both during programming (HDL), but also during synthesis, if aiming
for an ASIC. At the same time, high-speed implementations are required for
environments with much data, and where low latency is needed.

There are a large number of proposed cryptographic algorithms and several
attempts have been made towards identifying suitable algorithms for widespread
adoption, e.g., NESSIE, ECRYPT, CRYPTREC and the NIST AES contest.
The successful standardization of AES has been followed by more NIST initia-
tives, most notably the SHA-3 competition, the Post-Quantum Cryptography
Standardization Process and the recent Lightweight Cryptography Standardiza-
tion Process. The latter particularly addresses the need for algorithms that are
specifically targeting resource constrained environments [1].



2 J. Sönnerup, M. Hell, M. Sönnerup, R. Khattar

Grain-128AEAD is an instance of the Grain family of stream ciphers. Grain
was first proposed in 2005, as an 80-bit stream cipher. The 128-bit variant Grain-
128 was presented in 2006 [7], and was successfully cryptanalyzed in [5]. Building
upon previous analysis results, a new 128-bit variant with authentication (MAC)
support, Grain-128a, was proposed in 2011 [2]. It has also been adopted as an ISO
standard [10]. Most recently, Grain-128AEAD supporting Authenticated En-
cryption with Associated Data, was proposed in 2019 and also submitted to the
above mentioned NIST Lightweight Cryptography Standardization Process [8,9].
It is built upon the Grain-128a cipher, but with some added features. There have
been several implementations of Grain-128a, most notably the work in [11], where
the authors utilize Galois transforms, pipelining and multiple clocks, targeting a
high-throughput implementation. While this is important in high-speed applica-
tions such as 5G (and beyond) and in servers and gateways which handle multiple
connections simultaneously, low energy consumption for certain packet sizes is
essential for constrained devices. In [4], the authors target low-energy implemen-
tations of stream ciphers, including Grain-128a, discussing multiple techniques
for reducing power consumption. In this paper, we discuss several optimization
techniques applied to Grain-128AEAD, targeting both high-speed implementa-
tions and low-power implementations. Optimizations are considered in both the
RTL and at the synthesis level. A small area does not necessarily mean low en-
ergy consumption for encrypting a network packet. Adding some area to Grain
will reduce the energy for encrypting a packet, even though the power consump-
tion is slightly higher. Our results can be used to better understand the trade-offs
between area, power, energy and throughput for the Grain-128AEAD stream ci-
pher. They also provide new benchmark figures for its hardware performance,
allowing better and more transparent comparison with other ciphers supporting
AEAD. The code is made available at https://github.com/Grain-128AEAD.

The paper is outlined as follows. In Section 2, a high-level overview of the
Grain-128AEAD design is presented. Section 3 presents a straightforward im-
plementation providing results from where optimization strategies are derived.
In Section 4, the utilized RTL optimizations are discussed, whereas in Section 5,
different synthesis level optimizations are introduced. Finally, the results are
presented in Section 6 and the conclusions are given in Section 7.

2 Grain-128AEAD

This section will provide a brief overview of the Grain-128AEAD design in order
to support the optimization approaches discussed later. For a comprehensive
design description, we refer to the specification [8,9].

Grain-128AEAD is a cipher in the Grain family. It supports Authenticated
Encryption with Associated Data (AEAD) to simultaneously assure confiden-
tiality and authenticity of the data. The overall design is similar to the other
ciphers in the family, in particular Grain-128a. It consists of two main building
blocks. The first is a pre-output generator consisting of a Linear Feedback Shift
Register (LFSR) with feedback function f , a Non-linear Feedback Shift Register

https://github.com/Grain-128AEAD


Efficient Hardware Implementations of Grain-128AEAD 3

(NFSR) with feedback function g, and a pre-output function denoted h. The pre-
output generator outputs a stream yt. The second block is the authentication
block consisting of a shift register and an accumulator. A multiplexer (MUX)
is used to control if the pre-output stream yt is used for authentication, z′i, or
for keystream, zi. The architectural overview of Grain-128AEAD is depicted in
Fig. 1.

LFSR

Accumulator

Register

NFSR

g f

h
7 2 7

6524

mi

z'i zi

yt

...

/ / /

// /

Fig. 1. An architectural overview of Grain-128AEAD.

2.1 Phases of Grain-128AEAD

For the hardware implementation, we logically divide the cipher into three
phases. The first phase is the loading phase, in which the shift registers are
loaded with the key and the nonce. Next, Grain-128AEAD enters the initializa-
tion phase in which the registers and the authentication module are initialized.
Finally, the cipher enters the running phase, in which pre-output is generated
both for encryption and authentication.

2.2 Pre-output Generation

The pre-output generator uses a 128-bit LFSR and a 128-bit NFSR. The content,
at instance t, of the LFSR is denoted as St = [st0, s

t
1, . . . , s

t
127], and similarly for

the NFSR, Bt = [bt0, b
t
1, . . . , b

t
127]. Together, the two FSRs form the 256-bit state

of the generator. The feedback polynomial of the LFSR, f , may be written as
the recurrence relation given by

st+1
127 = st0 + st7 + st38 + st70 + st81 + st96

= L(St).



4 J. Sönnerup, M. Hell, M. Sönnerup, R. Khattar

The feedback polynomial of the NFSR, g, may be written as the recurrence
relation given by

bt+1
127 = st0 + bt0 + bt26 + bt56 + bt91 + bt96 + bt3b

t
67 + bt11b

t
13

+ bt17b
t
18 + bt27b

t
59 + bt40b

t
48 + bt61b

t
65 + bt68b

t
84

+ bt22b
t
24b

t
25 + bt70b

t
78b

t
82 + bt88b

t
92b

t
93b

t
95

= st0 + F(Bt).

The Boolean function ht uses bits from both the LFSR and the NFSR, and is
defined as

ht = bt12s
t
8 + st13s

t
20 + bt95s

t
42 + st60s

t
79 + bt12b

t
95s

t
94.

The output, yt, from the pre-output generator is given by

yt = ht + st93 +
∑
j∈A

btj ,

where A = {2, 15, 36, 45, 64, 73, 89}.
After the initialization phase, the pre-output is used to generate keystream

bits zi for encryption and authentication bits z′i to update the register in the
accumulator generator. The keystream is generated as

zi = y384+2i,

i.e., every even bit (counting from 0) from the pre-output generator is taken as
a keystream bit. The authentication bits are generated as

z′i = y384+2i+1,

i.e., every odd bit from the pre-output generator is taken as an authentication
bit.

2.3 Authentication Module

The authenticator generator consists of a 64-bit shift register and a 64-bit ac-
cumulator. The content of the shift register, at instance i, is denoted Ri =[
ri0, r

i
1, . . . , r

i
63

]
, and similarly for the accumulator, the content is denoted Ai =[

ai0, a
i
1, . . . , a

i
63

]
. The accumulator is updated as

ai+1
j = aij +mir

i
j , 0 ≤ j ≤ 63, 0 ≤ i ≤ L, (1)

where mi is the ith message bit, and the shift register is updated as

ri+1
63 = z′i,

ri+1
j = rij+1, 0 ≤ j ≤ 62.



Efficient Hardware Implementations of Grain-128AEAD 5

2.4 Loading and Initialization

After reset, the cipher must be loaded and initialized. The loading is performed
as follows. Let ki be the key bits where 0 ≤ i ≤ 127, and let IVi be the nonce
(IV) bits where 0 ≤ i ≤ 95. The NFSR is loaded with the key, i.e., b0i = ki, 0 ≤
i ≤ 127. The first 96 bits of the LFSR is loaded with the nonce, i.e., s0i =
IVi, 0 ≤ i ≤ 95, and the last 32 bits are filled with 31 ones and a zero, i.e.,
s0i = 1, 96 ≤ i ≤ 126, s0127 = 0. Next, in the initialization phase, the cipher is
clocked 256 times, feeding back the pre-output adding it with the input to the
NFSR and LFSR, using the XOR operation, i.e.,

st+1
127 = L(St) + yt, 0 ≤ t ≤ 255,

bt+1
127 = st0 + F(Bt) + yt, 0 ≤ t ≤ 255.

Next, the shift register and accumulator in the authenticator are initialized with
the pre-output stream as

a0j = y256+j , 0 ≤ j ≤ 63,

r0j = y320+j , 0 ≤ j ≤ 63.

At the same time, the key is added to the feedback of the LFSR as

st+1
127 = L(St) + kt−256, 256 ≤ t ≤ 383,

while the NFSR is updated as

bt+1
127 = st0 + F(Bt), 256 ≤ t ≤ 383.

The loading phase and the initialization phase are summarized in Fig. 2.

3 A Straightforward Approach

The stream cipher is implemented in hardware using RTL design in VHDL. For
synthesis and power simulation, the Synopsys Design Compiler 2013.12 is used
along with a 65 nm library from ST Microelectronics, stm065v536. The number
of required gates, and the number of transistors in a gate depends on the library
used and may vary by a large degree. In this paper, the area of the designs are
given in gate equivalents (GE), which is the physical area divided by the area of
a 2-input NAND gate for the given library.

A straightforward approach is taken when implementing the cipher, closely
following the proposed architectural design in [8,9] - the FSRs are in Fibonacci
configuration parallelized at most 32 times. The key and nonce are simultane-
ously loaded serially, and the accumulator is loaded by first loading the shift
register, then moving the values to the accumulator. For the parallelized imple-
mentations, the loading phase is sped up by a factor n, where n is the paral-
lelization level. A simple Finite State Machine (FSM) is used to keep track of



6 J. Sönnerup, M. Hell, M. Sönnerup, R. Khattar

LFSR

Accumulator

Register

NFSR

t = 0 .. 255

t = 0 .. 255

t = 256 .. 383
t = 256 .. 383

/ / /

g f

h

7 2 7

6524

yt

ki

///

...

Fig. 2. An architectural overview of the initialization in Grain-128AEAD.

the different phases, or states, in order to control the data paths. Finally, we let
the synthesizing tool optimize for speed. This implementation and synthesis is
used for benchmarking and comparison with our optimized implementations.

In order to improve the bottlenecks in the synthesized design, we must ana-
lyze the critical paths. Similar to [11], we define the following delays:

– Dn: the maximal delay from any NFSR or LFSR flip-flop to any other NFSR
or LFSR flip-flop.

– Dy: the maximal delay from any NFSR or LFSR flip-flop to the output, via
the y function.

– Dya: the maximal delay from any NFSR or LFSR flip-flop to any accumulator
flip-flip, via the y function.

– Da: the maximal delay from any flip-flop in the authentication section to
any accumulator flip-flop, or output.

– Dyn: the maximal delay from a flip-flop of the NFSR or LFSR through the
y function to the first flip-flop of the NFSR. This path only exists during
initialization of the cipher, via a MUX.

The critical paths are highlighted in Fig. 3. Note that yout, after initialization,
corresponds to z as in Fig. 1. Similarly, yaccum, after initialization, corresponds
to z′.

Synthesizing the design yields the results shown in Table 1, where the propa-
gation delay of the critical path is listed. Dyn is only available during initializa-
tion. In the running state of the cipher, it is instead Dn which is the critical path.
These critical delays, together with Dya, will be targeted in the next section.



Efficient Hardware Implementations of Grain-128AEAD 7

LFSR

Accumulator

Controller

Register

NFSR

g f

Y

9

64

6

yaccum

524

IVi
8ki

Tag

Da

Dya

Dyn

Dn

Dy

...Logic Logic

yout

yFlag

mi

ti

ce

ti+1

mi

cm

ti+1

ki

Fig. 3. Architectural overview of Grain-128AEAD with the following potential critical
paths highlighted: Dn (blue), Dy (purple), Dya (green), Da (yellow), and Dyn (red).

Table 1. Clock periods and critical paths of the straightforward implementation, for
different levels of parallelization.

x1 x2 x4 x8 x16 x32

Period (ns) 490 610 640 690 770 840

Critical Path Dyn Dyn Dyn Dyn Dya Dya

4 RTL Level Optimizations

Here, we present the architectural optimization techniques utilized when target-
ing speed, area, and power. In particular, for speed improvements, we aim to
lower the delay induced by the critical paths in Table 1. We start by present-
ing a general optimization technique, Galois transform, to reduce the Dn path.
Then, we utilize a similar technique in order to reduce the path Dyn, discussed
in Section 4.2.

4.1 Galois Transformation

As described earlier, the Dn path lies between two flip-flops (any flip-flop to the
right most flip-flop in Fig. 1) in the FSRs, for the 1, 2, 4, and 8 parallelized
versions, causing a bottleneck in the running mode. The usual strategy would
be to pipeline the FSRs by inserting flip-flops at well chosen positions. In order
to pipeline a design, the delay elements can only be inserted in the feed-forward
cutset of the corresponding graph [12]. This is not possible for the FSRs due to



8 J. Sönnerup, M. Hell, M. Sönnerup, R. Khattar

their intrinsic feedback property. In order to decrease the propagation delay in
the Dn path, the cipher may be transformed from its normal Fibonacci configu-
ration to a Galois configuration. In the Fibonacci configuration, the flip-flops are
updated with the value of the previous flip-flop every clock cycle, i.e., xi = xi+1,
except for xn−1 which gets updated with the result of the feedback polynomial,
i.e., xn−1 = f(x). In the Galois configuration, some of the flip-flops get updated
with the result of a function of other flip-flops, i.e., xi = g(x). The Galois con-
figuration leads to shorter propagation delays due to the feedback function in
Fibonacci being split up and put in between flip-flops.

For an LFSR, the Fibonacci to Galois transform is a one-to-one mapping.
For an NFSR, multiple Galois configurations exist for a given Fibonacci configu-
ration [6]. The Galois transform is identical to Grain-128a, hence we refer to [11]
for details. Grain-128a can not be transformed to a Galois configuration for a
parallelization level above 16. The same holds for Grain-128AEAD.

4.2 Transforming the y Function

During the initialization phase, the y function is being fed back to the shift
registers, forming an FSR. As in the previous section, it is not possible to insert
pipelines due to the lack of a feed-forward cutset. Instead, similar to the Galois
transform, it is possible to transform the y function in such way that it is split
up and fed back to different registers, which reduces the critical path, Dyn. The
transformed functions are denoted as Y125, Y126, and Y127. For a parallelization
level of 8 and 16, only Y126 and Y127 may be used. As an example for the non-
parallelized version, the functions are given by

Y127 = b12s8 + s13s20 + b95s42,

Y126 = b11b94s93 + b72 + b1 + s50s78,

Y125 = s91 + b87 + b13 + b34 + b43 + b62.

After initialization, during the running state, the feedback loop is discon-
nected. This allows for insertion of pipelines steps. By combining both Galois-
like transformation and pipelining, both Dyn and Dy may be reduced, see Fig. 4.
The controller switches between the two methods when required.

4.3 Isolating the Authentication Module

The accumulator is updated using the values in the shift register as in Eq. (1).
When parallelizing the design, the accumulator is updated with the correspond-
ing shift register plus values from the shift registers with larger index as

ai+1
j = aij +

p
2−1∑
k=0

mi+k · rij+k, p ≥ 4,

where p is the parallelization level. For p = 2, the update expression is equivalent
to Eq. 1, since 1 bit is generated every clock cycle for authentication. Note that



Efficient Hardware Implementations of Grain-128AEAD 9

NFSR LFSR

Y125

Y125Y126

Y125Y127

g f

yout

Fig. 4. The transformation of the y function along with pipeline steps and control
logic.

for a parallelization level of 4 and above, some values have not yet been shifted
in to the shift register, e.g., for p = 4, the register a63 is updated as

ai+1
63 = ai63 +

(
mi · ri63

)
+
(
mi+1 · ri64

)
,

where r64 has been generated but is not located in the shift register. This can
be seen as a future value, and requires extra combinational logic to handle.
This means that the path Dya becomes longer and, for the higher levels of
parallelization, affects the timing of the design, as seen in Table 1.

In order to make the Dya path shorter, a pipeline step is inserted between
the y function and the accumulator logic, as shown in Fig. 5. This allows for the
throughput to increase due to a higher clock frequency, but adds a 1 clock cycle
delay to the accumulator calculation. Note that this does not affect the security.

Accumulator

Register

yaccum

...
Logic Logic

Fig. 5. Isolating the authentication module using pipelining.



10 J. Sönnerup, M. Hell, M. Sönnerup, R. Khattar

4.4 Optimizing the Controller

A controller is a unit responsible for managing the data flow and operations,
such as the feedback loop, when to accumulate data, and when to encrypt the
plaintext.

The straightforward implementation of the controller is a finite state ma-
chine (FSM) with states corresponding to loading, initialization, and the run-
ning phase. The controller can also be implemented using a LFSR with some
combinational logic. Experiments with LFSRs gave roughly the same results as
the FSM generated by the synthesizer. Here, we explore an alternative strategy
to keep track of the state by using a clock divider and a shift register, which
often, but not always, gave better performance.

The idea is to start from an empty shift register (all zeroes), and shifting in
a 1 each clock cycle. This means that after n clock cycles, there is a 1 at index n
in the shift register. We can use this to control the logic in the cipher via, e.g.,
MUXes. However, Grain requires 512 clock cycles before it produces the first bit,
i.e., 128 for loading key and nonce plus 384 for the initialization rounds. This
results in a shift register with 512 flip-flops, which is not desirable due to the
huge increase in size. Instead, note that the resolution given by 512 registers is
not fully utilized, since we ignore most of the intermediate values, hence we can
reduce the size. With a reduced size, we must compensate with a lower clock
frequency for controlling the design at the correct time instances. This is done
using a clock divider to slow the shift register down by a factor 2k. The value
of 2kp can not exceed 128, since the least amount of clock cycles that we need
to keep track of are 128, for loading key and nonce. The number of registers
required depends on the level of parallelization, p, and the k value as 512/(2kp).
Taking the clock divider registers into account gives an expression for the total
number of registers required as

512

2kp
+ k.

This design does not require much hardware, e.g., letting p = 16, k = 3 results
in 7 flip-flops. In this paper, the largest value of k is selected, for every level of
parallelization, i.e., k = log2(128/p).

The index of the shift register corresponding to the different phases are cal-
culated as

iload =
128

kp
, iinit =

128 + 256

kp
, irun =

512

kp
.

For the control MUXes that remain in their state after being activated may
be directly connected to the controller. For the control MUXes that are only ac-
tivated during a single state, an inverter together with an AND-gate is required.

4.5 Unrolling

Grain natively supports parallelization up to 32 times by using multiple feedback
and output functions, f , g and y. However, there is nothing preventing us to go



Efficient Hardware Implementations of Grain-128AEAD 11

further, at RTL level. Consider AES, where multiple rounds of the AES round
function is executed one after the other, in a loop structure. The block is fed back
via MUXes to realize successive iterations. Unrolling the AES rounds to a level
L means that we put L AES round functions serially in a single combinational
block as done in [13].

When unrolling Grain, we do not utilize multiple instances of the FSRs, but
rather the feedback functions. When reaching a parallelization level above 32,
the feedback functions start to interact. Revising the feedback function f of the
LFSR, we can extend this to include multiple copies of f , denoted as fk. The
index k is related to the level of parallelization, where the highest k value plus 1
(max(k) + 1) equals the parallelization level. Expressing the bits as a sequence,
we can write the expression as

si+128+k = si+0+k + si+7+k + si+38+k + si+70+k + si+81+k + si+96+k.

With k = 31, the bit with the highest index in f31 is si+96+31 = si+127, by design.
However, k = 32 includes bit index si+128 in f32, which is not a register index,
but rather the output from the function f0. Thus, the two feedback functions are
connected, as seen in Fig. 6. Increasing k leads to more interconnection between
the feedback functions, thus increasing the propagation delay. Parallelization of
higher degrees for the authentication module continues the approach described
in Section 4.3.

Apart from an increase in throughput, unrolling also allows for energy saving
as more data is processed in a single clock cycle which reduces the total switching
activity and the number of clock cycles it takes to complete a computation [3].

LFSR0 1 96 97 126 127

f0
f1

f31

LFSR0 1 96 97 126 127 128

si+128

f0
f1

f31
f32

Fig. 6. Example of unrolling above the specified level of 32. The bottom picture shows
the structure when using a parallelization level of 33. The last feedback function, f32,
needs to read the value from a flip flop that does not exist, the register index 128.
Instead, this value is the output from f0, which would have been stored in register
index 128 if it existed. We can therefore take the output from f0 as an input to f32.
From this it is clear that the propagation delay increases when exceeding the specified
level of parallelization.



12 J. Sönnerup, M. Hell, M. Sönnerup, R. Khattar

5 Synthesis Level Optimization

Synthesis is the process where high-level RTL code, like VHDL and Verilog, is
used to generate a gate-level netlist. There are 3 steps involved during synthesis:

1. Translation: The RTL code is converted to a technology-independent repre-
sentation of Boolean expressions.

2. Optimization: The Boolean expressions are minimized, with respect to gates,
using a minimization algorithm.

3. Technology mapping: The Boolean expressions are mapped to a library,
based on the used technology, in order to produce a gate-level netlist.

Design Vision requires the RTL code, design constraints, and a standard cell
library, in order to generate a netlist. Design Vision offers two commands used for
compiling - compile and compile ultra. The compile ultra command is used
for designs with tight timing constraints, and produces better quality of results
compared to compile. Hence, only compile ultra is used during synthesis.

There are several compiler options to be utilized during synthesis. Here, we
highlight some of the most commonly used features:

– Structuring - The process where intermediate variables are added to the
design, in order to reduce area. The synthesis tool factors out common sub
functions that mostly reduces the area and turn them into intermediate
variables.

– Flattening - Here, the tool converts combinational logic paths into a sum-
of-products representation. This often leads to a faster design due to the
combinational logic requiring only two levels. Consequently, it may lead to
an increase in area.

– Ungrouping - A common strategy when implementing a design is to group
different parts of the code, to have a hierarchical design. This leads to well
structured design and it is easy to analyze the synthesized design. By un-
grouping, the tool is less constrained and may reorganize the design as it see
fits, which may lead to a faster design, at the expense of area.

– Clock Gating - Insert control logic in order to regulate the clock signal,
either to shut it down at time instances, or to modify the clock pulse. This
may be used to save energy.

5.1 Transistor Types

In a complementary MOS (CMOS) design, both NMOS and PMOS are used.
When one is conducting, the other is not, resulting in very small static power
consumption, given by

Ps = Vdd · Ileakage,

where Vdd is the supply voltage. The leakage current depends on the threshold
voltage, Vth, and a transistor with low Vth, LVT, has higher leakage current
than a transistor with a high Vth, HVT. To minimize leakage current, HVT



Efficient Hardware Implementations of Grain-128AEAD 13

transistors are most suitable for power efficient implementations. For the high-
speed implementations, LVT transistors are most suitable since they allow to
increase the switching speed.

6 Synthesis Results

Providing results for all possible combinations of implementations, synthesis
options and transistors would become very verbose. Instead, to facilitate a more
clear and concise presentation and basis for comparison, the implementations
considered will be as follows.

– Straightforward implementation. This implementation will closely fol-
lows the architectural design, using no optimization techniques. The design is
synthesized for high speed utilizing LVT transistors, and different synthesis
flags to achieve the best result.

– High speed implementation. Here, we apply all viable optimizations at
RTL and synthesis level and synthesize for high speed using LVT transistors.

– Low Power implementation. In the low power scenario, we cut back the
clock frequency, employing only unrolling and the improved controller as
optimization techniques. Both the LVT and HVT transistors are used for
comparison of power consumption.

6.1 Straightforward Implementation

Results for the straightforward implementation are shown in Table 2, using no
RTL optimizations, but synthesized for maximum speed. Synthesis options such
as flattening, structuring, and ungrouping were utilized. Neither flattening nor
structuring affected the result significantly. Only the grouping/ungrouping op-
tion made a difference. This difference was typically in the order of 0.02 ns for
the period. In the result tables, the best result is presented, and we also highlight
whether grouping (G) or ungrouping (U) yielded the result.

Similar to [4], we also calculate the energy consumed when encrypting 1 block
of data (64 bits) and 1000 blocks, shown in Table 3. For example, encrypting
1 block of data, in the non-parallelized (n = 1) version at 2.04 GHz, requires
128 (loading key and IV) + 384 (initialization) + 128 (64 keystream bits +
64 bits for authentication) = 640 clock cycles. The energy consumed results in
640×0.49 ns×170 µW = 0.053 nJ. Note that the number of clock cycles required
for encryption is inversely proportional to n.

The non-parallelized version has the highest clock frequency, but the lowest
throughput (thrp). The clock period does not scale at the same rate as n, which
allows the higher levels of parallelization to have higher throughput. Between
n = 1 and n = 32, the throughput increases by a factor 19, whereas the area
only increases by a factor 3.8. For n = 32, we achieve the highest throughput
to area ratio. For n = 4, the highest throughput to power is reached along with
the lowest energy consumption, making it the most power efficient version.



14 J. Sönnerup, M. Hell, M. Sönnerup, R. Khattar

Table 2. Straightforward implementation synthesized for high speed. The throughput
per area is given in kbit/s per GE. The throughput per power is given in Gb/s per
mW . The synthesis optimization (Opt.) shows whether grouping (G) or ungrouping
(U) gave the best result.

n Period Freq. Thrp. Area Power Thrp. / Thrp. / Opt.

Area Power

(ns) (GHz) (Gb/s) (GE) (mW )

1 0.49 2.04 1.02 2689 0.17 182 5.99 U

2 0.61 1.64 1.64 2776 0.14 284 11.76 G

4 0.64 1.56 3.12 3333 0.21 450 14.93 G

8 0.69 1.44 5.76 4324 0.42 640 13.70 G

16 0.77 1.29 10.32 6265 0.92 792 11.24 G

32 0.84 1.19 19.04 10226 2.54 895 7.52 G

Table 3. This shows the energy consumption for the straightforward implementation,
processing 1 and 1000 blocks of data. 1 block equals 64 bits of data.

Energy (nJ) x1 x2 x4 x8 x16 x32

1 Block 0.053 0.027 0.022 0.023 0.028 0.042

1000 Blocks 10.70 5.48 4.31 4.65 5.69 8.57

The ungrouping option seems to be worse for all versions except n = 1. Using
the ungrouping option led to a higher clock frequency, but the tool reported
fanout violations which it could not resolve. Choosing to only consider results
without any violations, these results were omitted.

6.2 High Speed Implementation

Here, we apply the techniques described earlier in order to increase the through-
put of the design. For the parallelization levels 1, 2, 4, 8 and 16, Galois transform
together with y transform, isolation of authentication module, and the optimized
controller are utilized. For the 32 (parallelized) and 64 (unrolled) versions, only
isolation of authentication and the optimized controller are possible. Transfor-
mation of the y function is not applicable due to similar constraints as for the
Galois transformation of the shift registers.

The results for the optimized implementation are presented in Table 4. The
energy consumption for a given message length is given in Table 5, where the
highest speed at each level of parallelization from Table 4 is used. Table 4 shows
an increase in throughput for every level of parallelization, at the expense of
increased power consumption. However what is interesting is that the optimized
controller actually reduces the power consumption while increasing the through-
put for n = 32 and n = 64. For n = 32, the power consumption is lower than
the straightforward implementation, while for n = 64, it is just 0.22 mW more



Efficient Hardware Implementations of Grain-128AEAD 15

Table 4. Results for the high-speed implementation, with optimized controller on
greyed background and regular controller on white. The throughput per area is given
in kbit/s per GE. The throughput per power is given in Gb/s per mW .

n Period Freq. Thrp. Area Power Thrp. / Thrp. / Opt.

Area Power

(ns) (GHz) (Gb/s) (GE) (mW )

1 0.43 2.3 1.15 2791 0.24 412 4.79 U

0.40 2.5 1.25 2645 0.25 472 5.00 U

2 0.46 2.17 2.17 2800 0.21 776 10.33 G

0.43 2.32 2.32 2695 0.23 861 10.09 G

4 0.47 2.13 4.26 3335 0.29 1277 14.69 G

0.48 2.08 4.16 3199 0.29 1300 14.34 U

8 0.48 2.08 8.32 4537 0.67 1834 12.42 G

0.46 2.17 8.68 4448 0.67 1951 12.96 G

16 0.50 2.00 16.00 6270 1.44 2552 11.11 G

0.48 2.08 16.64 7118 1.55 2338 10.74 U

32 0.69 1.45 23.20 9148 2.66 2536 8.72 G

0.64 1.56 24.96 9206 1.78 2710 14.02 U

64 1.00 1.00 32.00 16618 4.76 1926 6.72 G

0.95 1.05 33.60 16958 2.76 1982 12.17 U

Table 5. This shows the energy consumption for the high-speed implementation, pro-
cessing 1 and 1000 blocks of data. 1 block equals 64 bits of data.

Energy (nJ) x1 x2 x4 x8 x16 x32 x64

1 Block 0.064 0.032 0.022 0.025 0.030 0.023 0.026

1000 Blocks 12.85 6.35 4.38 4.95 5.98 4.58 5.26

than the straightforward, 32 parallelized version, but with a 76% increase in
throughput. We can again note that a parallelization level of 4 yields the highest
throughput per power along with the lowest energy consumption. The optimized
controller also affects the throughput per power the most for n = 32 and n = 64.

As also seen in Table 4, ungrouping the design led to a higher throughput
when using the optimized controller.

It is clear that the area increases with higher throughput, due to higher
levels of parallelization. An important metric is the throughput per area, which
measures area efficiency. From the table, we find that the most area efficient
implementation occurs when n = 32, using the improved controller. This is not
surprising since increasing parallelization should only require a “small” increase
in area, by design. This is an important feature in the Grain family of stream
ciphers.



16 J. Sönnerup, M. Hell, M. Sönnerup, R. Khattar

6.3 Low Power Implementation

When targeting low power, a clock period must be specified. Many low-power
devices run at frequencies around 10 MHz. The ISO standard for contactless
smart cards, ISO/IEC 15693, defines the frequency to be 13.56 MHz. Older
proximity cards operate at 125 kHz. Thus, for low power applications, we choose
to synthesize the design at the clock frequencies 100 KHz and 10 MHz, shown
in Table 6 and 7, respectively.

The synthesis script utilizes compile ultra with clock gating and low power
transistors (HVT). For comparison, we also synthesize the design using the high
speed scripts and select the best result, for comparison. The RTL optimization
implemented for low power is unrolling along with the optimized controller.

Table 6. Result for the low power implementation running at 100 kHz. Here, we
compare the speed script (Ss), the power (Ps) script, and the power script using the
optimized controller (Popt). 1 block equals 64 bits of data.

n
Area (GE) Power (µW ) Energy (nJ)

Ss Ps Popt Ss Ps Popt 1 block 1000 blocks

1 2509 2375 2337 2.29 0.23 0.26 1.47 296

- -5% -7% - -89% -88% - -

2 2592 2588 2511 2.33 0.28 0.30 0.90 180

- 0% -3% - -87% -86% - -

4 2952 2950 2862 2.33 0.29 0.32 0.46 93.2

- 0% -3% - -87% -86% - -

8 3695 3692 3594 2.76 0.31 0.35 0.25 49.8

- 0% -2% - -88% -87% - -

16 5168 5158 5053 3.77 0.42 0.39 0.16 31.3

- 0% -2% - -89% -90% - -

32 8168 8126 7950 5.93 0.62 0.46 0.09 18.5

- 0% -3% - -90% -92% - -

64 14100 14093 13800 10.89 1.08 0.63 0.06 12.7

- 0% -2% - -90% -94% - -

Overall, there was very little difference in area when synthesizing for high
speed and low power using the standard controller. For such low frequencies, the
timing is easily met and the tool optimizes for area in both cases, thus there is
not much to improve. For the power however, there is a clear difference using
HVT transistors compared to LVT. There is a 86 - 92% reduction in power
consumption for all levels of parallelization running at 100 kHz, and a 19 - 37%
power reduction for 10 MHz. In the design paper of Grain [8,9], the authors
used HVT transistors when synthesizing for high speed. This led to a lower
clock frequency and a higher power consumption than the figures in Table 4.



Efficient Hardware Implementations of Grain-128AEAD 17

Table 7. Result for the low power implementation running at 10 MHz. Here, we
compare the speed script (Ss), the power (Ps) script, and the power script using the
optimized controller (Popt). 1 block equals 64 bits of data.

n
Area (µm2) Power (µW ) Energy (nJ)

Ss Ps Popt Ss Ps Popt 1 block 1000 blocks

1 2510 2375 2337 33.66 22.07 25.21 1.41 283

- -5% -6% - -34% -25% - -

2 2592 2589 2511 33.96 26.93 29.13 0.86 173

- 0% -3% - -21% -14% - -

4 2952 2951 2862 34.43 27.38 31.05 0.44 88.0

- 0% -3% - -20% -10% - -

8 3695 3693 3595 36.83 29.38 33.59 0.24 47.2

- 0% -3% - -20% -9% - -

16 5168 5162 5057 44.02 39.49 36.93 0.15 29.7

- 0% -2% - -10% -16% - -

32 8172 8128 7951 66.02 57.08 41.66 0.08 16.7

- 0% -2% - -13% -37% - -

64 14101 14093 13810 117.4 97.39 55.93 0.06 11.2

- 0% -2% - -17% -52% - -

Hence, HVT should only be used for lower frequencies where power is the main
concern, whereas LVT should be used for higher frequencies where the target is
speed.

Even though the power consumption increases with increasing n, the en-
ergy cost decreases since the computation can be done in much shorter time.
This leads to the unrolled 64-parallelized version being the most energy efficient
implementation for a given message length.

The optimized controller reduces the area in all cases at expense of higher
power consumption for n = 1, 2, 4, 8. For n = 16, 32, 64, the power consumption
is reduced when using the optimized controller.

7 Conclusions

In this paper, we implemented Grain-128AEAD and investigated the impact of
different implementation strategies, from RTL to synthesis-level design, to either
achieve high throughput or low power consumption.

By utilizing different optimization techniques, we reduced the power by up to
94% compared to a straightforward implementation. By unrolling the design, the
power consumption increases while the energy for encrypting a message of fixed
size decreases. The 64-level parallelization implementation requires only 11.2 nJ
when encrypting 64 kbits of data compared to 283 nJ for the non-parallelized



18 J. Sönnerup, M. Hell, M. Sönnerup, R. Khattar

version. For the high-speed implementation, the maximum throughput reached
is 33.6 Gb/s. It is not obvious in which cases the (un)grouping option yields the
best result, hence both options should be analyzed in order to find the best result.
We notice that a parallelization level of 4 yields the most power efficient imple-
mentation, both for the straightforward implementation and the high-speed one.
The experiments show that Grain is well suited both in high-speed applications
as well as on constrained devices requiring low power consumption.

8 Source Code

The source code can be found at
https://drive.google.com/open?id=14NYrM9yyV1MP6UM2IHMJmWEybOcLXHU8.

Acknowledgements This paper was supported by the Swedish Foundation for
Strategic Research, grant RIT17-0032.

References

1. National institute of standards and technology: Proposed submis-
sion requirements and evaluation criteria for the post-quantum
cryptography standardization process (2018), https://csrc.nist.

gov/CSRC/media/Projects/Lightweight-Cryptography/documents/

final-lwc-submission-requirements-august2018.pdf

2. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128 a: a new version of Grain-
128 with optional authentication. International Journal of Wireless and Mobile
Computing 5(1), 48–59 (2011)

3. Banik, S., Bogdanov, A., Regazzoni, F.: Exploring energy efficiency of lightweight
block ciphers. In: Dunkelman, O., Keliher, L. (eds.) Selected Areas in Cryptography
– SAC 2015. pp. 178–194. Springer International Publishing, Cham (2016)

4. Banik, S., Mikhalev, V., Armknecht, F., Isobe, T., Meier, W., Bogdanov,
A., Watanabe, Y., Regazzoni, F.: Towards low energy stream ciphers.
IACR Transactions on Symmetric Cryptology 2018(2), 1–19 (Jun 2018).
https://doi.org/10.13154/tosc.v2018.i2.1-19, https://tosc.iacr.org/index.

php/ToSC/article/view/886

5. Dinur, I., Shamir, A.: Breaking Grain-128 with dynamic cube attacks. In: Joux, A.
(ed.) Fast Software Encryption. pp. 167–187. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011)

6. Dubrova, E.: A transformation from the Fibonacci to the Galois NLFSRs.
IEEE Transactions on Information Theory 55(11), 5263–5271 (Nov 2009).
https://doi.org/10.1109/TIT.2009.2030467

7. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-
128. In: 2006 IEEE International Symposium on Information Theory. pp. 1614–
1618 (July 2006). https://doi.org/10.1109/ISIT.2006.261549

8. Hell, M., Johansson, T., Meier, W., Sönnerup, J., Yoshida, H.: An AEAD variant of
the Grain stream cipher. In: Carlet, C., Guilley, S., Nitaj, A., Souidi, E.M. (eds.)
Codes, Cryptology and Information Security. pp. 55–71. Springer International
Publishing, Cham (2019)

https://drive.google.com/open?id=14NYrM9yyV1MP6UM2IHMJmWEybOcLXHU8
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://doi.org/10.13154/tosc.v2018.i2.1-19
https://tosc.iacr.org/index.php/ToSC/article/view/886
https://tosc.iacr.org/index.php/ToSC/article/view/886
https://doi.org/10.1109/TIT.2009.2030467
https://doi.org/10.1109/ISIT.2006.261549


Efficient Hardware Implementations of Grain-128AEAD 19

9. Hell, M., Johansson, T., Meier, W., Sönnerup, J., Yoshida, H.: Grain-128AEAD
- a lightweight AEAD streamcipher. NIST Lightweight Cryptography, Round 1
Submission (2019)

10. ISO/IEC 29167-13:2015 information technology — automatic identification and
data capture techniques — part 13: Crypto suite Grain-128A security services for
air interface communications (2015)

11. Mansouri, S.S., Dubrova, E.: An improved hardware implementation of the Grain-
128a stream cipher. In: Kwon, T., Lee, M.K., Kwon, D. (eds.) Information Security
and Cryptology – ICISC 2012. pp. 278–292. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013)

12. Proakis, J.G., Manolakis, D.K.: Digital Signal Processing (4th Edition). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA (2006)

13. Zambreno, J., Nguyen, D., Choudhary, A.: Exploring area/delay tradeoffs in an
AES FPGA implementation. In: Becker, J., Platzner, M., Vernalde, S. (eds.) Field
Programmable Logic and Application. pp. 575–585. Springer Berlin Heidelberg,
Berlin, Heidelberg (2004)


	Efficient Hardware Implementations of Grain-128AEAD

