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Abstract. A new Grain stream cipher, denoted Grain-128AEAD is pre-
sented, with support for authenticated encryption with associated data.
The cipher takes a 128-bit key and a 96-bit IV and produces a pseudo
random sequence that is used for encryption and authentication of mes-
sages. The design is based on Grain-128a but introduces a few changes
in order to increase the security and protect against recent cryptanalysis
results. The MAC is 64 bits, as specified by the NIST requirements in
their lightweight security standardization process.
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1 Introduction

Due to widespread usage of Internet of Things (IoT) technology, the need of
protection from security threats on resource-constrained devices has been con-
tinuously growing. Since 2003, the cryptography community has already rec-
ognized the importance of this need, and researchers and developers have fo-
cused on cryptography tailored to limited computation resources in hardware
and software implementations. This has resulted in opening up a new subfield of
cryptography, namely, lightweight cryptography, which led to the launch of the
eSTREAM project. This project running from 2004 to 2008 can be viewed as the
most important research activity in the area of lightweight stream ciphers. The
eSTREAM portfolio contains four software-oriented ciphers and three hardware-
oriented ciphers.

From an industrial point of view, it has been widely recognized that maturity
is important regarding deployment of cryptographic mechanisms. In fact, the
ISO/IEC 18033-1 [32] standard states this property as one criteria for inclusion
of cryptographic mechanisms. The concept behind this it that, if cryptographic
mechanisms are standardized, they should be in the public domain for many
years. In this way, security and performance analysis of them can be performed
by third parties, which would give the users a significant amount of confidence in



security. The above mentioned eSTREAM project activity affected industry: one
of the eSTREAM portfolio cipher, Trivium [14], is standardized in the lightweight
stream cipher standard, ISO/IEC 29192-3 [31] together with Enocoro [48]. Grain-
128a, which is based on the eSTREAM portfolio cipher Grain v1, is standardized
in ISO/IEC 29167-13 [33] for the RFID application standard.

Despite of the above extensive academic and industry efforts, there is still an
important gap to fill. There has been no authenticated encryption with associ-
ated data (AEAD) mechanism that meets very severe performance requirements
in hardware and still offers 128-bit security, accompanied by serious evidence on
cryptanalysis. In 2013, NIST initiated a lightweight cryptography project, fol-
lowed by two workshops on the same subject. In 2017, NIST published a call for
submissions for lightweight cryptographic mechanisms. One remarkable feature
is that NIST requires each submission to implement the AEAD functionality.
In [9], it was shown that lightweight stream ciphers are typically more suitable
than lightweight block ciphers for energy optimization when encrypting longer
messages, in particular when the speed can be increased at the expense of mod-
erate extra hardware. Thus, a lightweight stream cipher seems to be a good
starting point for a lightweight AEAD design.

This paper presents Grain-128AEAD, an authenticated encryption algorithm
with support for associated data. The specification is in line with the require-
ments given by NIST and is based on the Grain stream cipher family. More
specifically, it is closely based on Grain-128a, introduced in 2011, which has,
already for several years, been analyzed in the literature. To benefit from the
maturity of the Grain family, our strategy in the design of Grain-128AEAD is
to have the changes made to Grain-128a as small as possible. Grain-128a is in
turn based on Grain v1 and Grain-128, which have both been extensively ana-
lyzed, providing much insight into the security of the design approach. All Grain
stream ciphers also allow the throughput to be increased by adding additional
copies of the Boolean functions involved.

Industrial relevance of the Grain family can be explained as follows: Grain-
128a receives a lot of attention from industry. ISO/IEC 29167-13:2015 specifying
Grain-128a has been adopted in industrial applications. For instance, the passive
IT70 RFID tag [30] that Honeywell has designed for automotive applications
implements this security standard.

The outline of the paper is as follows. In Section 2 the specification of the
new primitive is given. Then the overall design rationale, motivating the design
choices, are given in Section 3. A security analysis, focusing on cryptanalysis of
Grain-128a is then given in Section 4. The hardware implementation is described
in Section 5 and the paper is concluded in Section 6.

2 Design Details

Grain-128AEAD consists of two main building blocks. The first is a pre-output
generator, which is constructed using a Linear Feedback Shift Register (LFSR),
a Non-linear Feedback Shift Register (NFSR) and a pre-output function, while



the second is an authenticator generator consisting of a shift register and an
accumulator. The design is very similar to Grain-128a, but has been modified to
allow for larger authenticators and to support AEAD. Moreover, the modes of
usage have been updated.

2.1 Building Blocks and Functions

The pre-output generator generates a stream of pseudo-random bits, which are
used for encryption and the authentication tag. It is depicted in Fig. 1. The
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Fig. 1. An overview of the building blocks in Grain-128AEAD.
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registers represent the 256-bit state of the pre-output generator.
The primitive feedback polynomial of the LFSR, defined over GF(2) and

denoted f(x), is defined as

f(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128.

The corresponding update function of the LFSR is given by

st+1
127 = st0 + st7 + st38 + st70 + st81 + st96

= L(St).

The nonlinear feedback polynomial of the NFSR, denoted g(x) and also defined
over GF(2), is defined as

g(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60 + x61x125

+ x63x67 + x69x101 + x80x88 + x110x111 + x115x117

+ x46x50x58 + x103x104x106 + x33x35x36x40



and the corresponding update function is given by
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Nine state variables are taken as input to a Boolean function h(x). Two of
these bits are taken from the NFSR and seven are taken from the LFSR. The
function is defined as

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8,

where the variables x0, . . . , x8 correspond to, respectively, the state variables
bt12, s

t
8, s

t
13, s

t
20, b

t
95, s

t
42, s

t
60, s

t
79 and st94.

The output of the pre-output generator, is then given by the pre-output
function

yt = h(x) + st93 +
∑
j∈A

btj ,

where A = {2, 15, 36, 45, 64, 73, 89}.
The authenticator generator consists of a shift register, holding the most re-

cent 64 odd bits from the pre-output, and an accumulator. Both are of size 64
bits. We denote the content of the accumulator at instance i as Ai = [ai0, a

i
1, . . . , a

i
63].

Similarly, the content of the shift register is denoted Ri = [ri0, r
i
1, . . . , r

i
63].

2.2 Key and IV Initialization

Before the pre-output can be used as keystream and for authentication, the in-
ternal state of the pre-output generator and the authenticator generator registers
are initialized with a key and IV. Denote the key bits as ki, 0 ≤ i ≤ 127 and the
IV bits as IV i, 0 ≤ i ≤ 95. Then the state is initialized as follows. The 128 NFSR
bits are loaded with the bits of the key b0i = ki, 0 ≤ i ≤ 127 and the first 96
LFSR elements are loaded with the IV bits, s0i = IVi, 0 ≤ i ≤ 95. The last 32 bits
of the LFSR are filled with 31 ones and a zero, s0i = 1, 96 ≤ i ≤ 126, s0127 = 0.
Then, the cipher is clocked 256 times, feeding back the pre-output function and
XORing it with the input to both the LFSR and the NFSR, i.e.,

st+1
127 = L(St) + yt, 0 ≤ t ≤ 255,

bt+1
127 = st0 + F(Bt) + yt, 0 ≤ t ≤ 255.

Once the pre-output generator has been initialized, the authenticator generator
is initialized by loading the register and the accumulator with the pre-output
keystream as

a0j = y256+j , 0 ≤ j ≤ 63,

r0j = y320+j , 0 ≤ j ≤ 63.



When the register and the accumulator are initialized, the key is simultaneously
shifted into the LFSR,

st+1
127 = L(St) + kt−256, 256 ≤ t ≤ 383,

while the NFSR is updated as

bt+1
127 = st0 + F(Bt), 256 ≤ t ≤ 383.

Thus, when the cipher has been fully initialized the LFSR and the NFSR
states are given by S384 and B384, respectively, and the register and accumulator
are given by R0 and A0, respectively. The initialization procedure is summarized
in Fig 2.
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Fig. 2. An overview of the initialization in Grain-128AEAD. Note that, in hardware,
the accumulator initialization is realized by first loading 64 pre-output bits into the
register, followed by moving them to the accumulator.

2.3 Operating Mode

For a message m of length L, denoted m0,m1, . . . ,mL−1, set mL = 1 as padding
in order to ensure that m and m‖0 have different tags.

After initializing the pre-output generator, the pre-output is used to generate
keystream bits zi for encryption and authentication bits z′i to update the register
in the accumulator generator. The keystream is generated as

zi = y384+2i,

i.e., every even bit (counting from 0) from the pre-output generator is taken as
a keystream bit. The authentication bits are generated as

z′i = y384+2i+1,



i.e., every odd bit from the pre-output generator is taken as an authentication
bit. The message is encrypted as

ci = mi ⊕ zi, 0 ≤ i < L.

The accumulator is updated as

ai+1
j = aij + mir

i
j , 0 ≤ j ≤ 63, 0 ≤ i ≤ L,

and the shift register is updated as

ri+1
63 = z′i,

ri+1
j = rij+1, 0 ≤ j ≤ 62.

An AEAD scheme allows for data that is authenticated, but unencrypted.
Grain-128AEAD achieves this simply by explicitly setting y384+2i = 0 for bits
that should not be encrypted, but should still be authenticated. This means that
it is possible to control the associated data on bit level, and this data can appear
anywhere in the message.

3 Design Rationale

This section presents a short overview of the Grain stream ciphers and how
the design has evolved through the different versions. It also enumerates and
discusses the differences between Grain-128a and the proposed Grain-128AEAD.

3.1 A Short History of the Grain Family of Stream Ciphers

The Grain family of stream ciphers are based on the idea behind the nonlinear
filter generator. In a nonlinear filter, an LFSR is used to provide a sequence
with large period, and a nonlinear function, taking parts of the LFSR sequence
as input, is used to add nonlinearity to the keystream sequence. Much work
has been put into analyzing the nonlinear filter generator and it is clear that it
is very difficult to design a secure nonlinear filter generator with a reasonable
hardware footprint [13]. In particular algebraic attacks have been shown to be
very strong against this design, see e.g., [17, 41].

In order to better withstand algebraic attacks, and to make the relation
between state/key and keystream more complex, Grain adds an NFSR to the
nonlinear combiner. The initial submission to the ECRYPT eSTREAM project
was analyzed in [10, 37], showing that the nonlinear functions required higher
resiliency and nonlinearity. The modified design was subsequently published as
Grain v1 [28] and was later selected for the final portfolio in eSTREAM. Grain
v1 uses an 80-bit key, and a 128-bit key variant was proposed in [27]. Based
on previous results on the Grain construction, Grain-128 was more aggressively
designed, making the nonlinear NFSR feedback function of degree 2, but with
high nonlinearity and resiliency. The relatively small functions compensated for



the fact that the shift registers were increased to 128 bits each, which increased
the hardware footprint. The low degree functions were exploited in [3, 44] in
order to cryptanalyze a significant number of initializations rounds. These re-
sults suggested that the nonlinear functions needed a higher security margin.
Grain-128a was proposed in [50], and in addition to increasing the degree of the
nonlinear feedback function, an optional authentication mode was added. Work
on Grain-128 were subsequently improved [19–21,35], emphasizing the need for
more complex Boolean functions, and Grain-128 is considered broken and should
not be used. The design proposed in this paper, Grain-128AEAD, is closely based
on Grain-128a, using the same feedback and output functions. However, slight
modifications have been made in order to add security and make it resistant to
the attack proposed in [46].

3.2 Differences Between Grain-128AEAD and Grain-128a.

Grain-128AEAD takes Grain-128a as starting point, but introduces a number
of slight modifications. The modifications are primarily motivated by the NIST
Lightweight Cryptography Standardization Process, but inspiration also comes
from recent results in [25,46].

Larger MACs The register and the authenticator has been increased to 64
bits (instead of 32 bits) in order to allow for authentication tags (MACs) of size
64 bits.

No Encryption-only Mode Grain-128a allowed for an operation mode with
only encryption, where the authentication was removed. This mode resulted in
smaller hardware footprint since the two additional registers, and their associated
logic, could be left out from an implementation. The encryption-only mode was
also more efficient since the initialization process does not include initializing the
register and the accumulator, and every pre-output bit was used as keystream.
The proposed Grain-128AEAD is a pure authenticated encryption algorithm,
and authentication of data is always supported. Thus, there is only one mode of
operation.

Initialization Hardening Based on the ideas in [25] and used in Lizard [26],
Grain-128AEAD re-introduces the key into the internal state during the ini-
tialization clock cycles. More specifically, it is serially shifted into the LFSR in
parallell to the initialization of the register and the accumulator. Several variants
can be considered here, including where and when to add the key. The LFSR is
chosen due to the fact that if the LFSR is recovered (e.g., in a fast correlation
attack as in [46]), it is comparably easy to recover the NFSR state. Moreover,
since the LFSR output is XORed with the NFSR input, the key bits will con-
tinue to affect also the NFSR during pre-output generation. As for when, we
choose to re-introduce it during the last 128 clocks of the initialization. This



provides maximum separation between its first introduction in the key loading
part, where the key is loaded into the NFSR, and when it is re-introduced. Rela-
tions between keys are e.g., more difficult to exploit if the key is properly mixed
into the state before the key is re-introduced.

By introducing the key as the last part of the initialization, we achieve the
attractive effect that a state recovery attack does not immediately imply key
recovery, as was the case for previous versions of Grain. While a state recovery
would still render the cipher to be considered broken, the practical effect to
deployed devices is highly limited. Recovering the state will only compromise
the security of the current message, and not all messages using the same key.

Keystream Limitation Grain stream ciphers have been designed to allow for
encrypting large chunks of data using the same key/IV pair. Previously, the
Grain ciphers have not had any explicit limitation on the keystream length.
However, to rule out attacks that use very large keystream sequences, Grain-
128AEAD restricts the number of keystream bits for each key/IV to 280. We
believe that this is well above what will be needed in the foreseeable future.
Restricting the number of keystream bits will also make attacks that use linear
approximations more difficult, e.g., [46].

4 Security Analysis

The security of the Grain family of stream ciphers has been investigated by a
large number of third party analysts, publishing various analysis results on the
different variants of Grain. Since its first introduction in 2005, much have been
learned about the construction and the design approach. There have also been
several published ciphers inspired by the design, e.g., Sprout [2] and its successor
Plantlet [42]. Also Fruit [23] and Fruit-80 [1] are based on the same design idea.
These ciphers have in common that they attempt to realize extremely resource
constrained encryption. To minimize the hardware footprint, the key is assumed
to be stored in non-volatile memory (NVM) on a device, and this memory is
made part of the cryptographic algorithm. Since the key needs to be stored
on a device anyway, using the key directly from NVM in the algorithm does
not impose additional hardware to the construction. This is not the case for
Grain, as we allow the key to be updated in the device, and the key storage is
not a part of the cipher. Still, the fact that the above mentioned ciphers use the
Grain design idea shows that the design seems to be very suitable for lightweight
cryptography.

4.1 General Security Analysis

A main class of attacks on stream ciphers is the Time/Memory/Data tradeoff
(TMD-TO) attack, an efficient method of finding either the key or the state
of ciphers by balancing between time, memory and keystream data. This can
sometimes be much more efficient and more practically applicable than a simple



exhaustive key search attack. Some stream ciphers are vulnerable to TMD-TO
attacks and their effective key lengths could then be reduced. This typically
happens if the state size is too small. A famous practical TMD-TO attack on
A5/1 was given in [12].

A TMD-TO attack consists of two parts. The first is a preprocessing phase,
during which a table is constructed. The mapping of different keys or internal
states to some keystream segment is computed and stored in the table. It is
sorted on keystream segments and this process is assumed to use time com-
plexity P and memory M . In the second (real-time) phase, the attacker has
intercepted D keystream segments and search for a collision with the table with
time complexity T . A collision will recover the corresponding input. By a trade-
off between parameters P,D,M , and T , attackers can devise attacks according
to available time, memory and data. Examples of tradeoffs are Babbage-Golic
(BG) [4,24] and Biryukov-Shamir (BS) [11] with curves TM = N , P = M with
T ≤ D; and MT 2D2 = N2, P = N/D with T ≥ D2, where N is the input space,
respectively.

For Grain-128AEAD, attackers have no direct way to reconstruct the inter-
nal state, since the cipher has an internal state of size 256 bits (128-bit LFSR +
128-bit NFSR), i.e. N = 2256. The best attack complexity achieved under BG
tradeoff is with T = M = D = N1/2 = 2128, which is not favourable compared to
exhaustive key search. Also the BS tradeoff does not give complexity parameters
of particular interest. Some improvements to TMD-TO attacks can be achieved
through socalled BSW sampling [12] and the performance of such an approach
is characterized by the sampling resistance of the stream cipher. Various gener-
alizations of the concept of sampling resistance can be considered, e.g. [34], but
it seems unlikely that this will lead to an attack with better performance than a
standard Hellman-type time-memory tradeoff attack on the keyspace, a generic
attack applicable to any cipher. Also, our limit on the length of keystreams
affects such attacks.

Another class of general attacks are algebraic attacks, where the attacker de-
rives a system of nonlinear equations in unknown key bits or unknown state bits
and then solves the system. In general, solving a system of nonlinear equations
is not known to be solvable in polynomial time, but there might be special cases
that can be solved efficiently [16]. Due to the NFSR, the degree of the equations
will gradually increase and it does not look promising to try to derive a system
of nonlinear equations due to this property as well as the algebraic degree of the
h function.

A general cryptanalytic technique is a guess-and-determine attack, where one
guesses parts of the state and then from the keystream tries to determine other
parts of the state. The goal is to guess as few positions as possible and determine
as many as possible from equations involving the keystream. Again, since the
dependence between a keystream symbol and the state includes many different
positions in the state and some of them in nonlinear expressions, one has to
guess a large portion of state variables in order to use an equation to determine
a single state variable.



Being a binary additive stream cipher, Grain-128AEAD does not allow reuse
of a key/IV pair since this will leak information about the corresponding plain-
texts. Moreover, since Grain-128AEAD closely resembles Grain-128a, a key/IV
pair used in one cipher may also not be reused in the other. Such cross-cipher
key/IV reuse in a related cipher model is outside the security model of Grain-
128AEAD.

In the subsequent subsections, we now describe the attacks that we consider
as the main threat against lightweight stream ciphers in general and Grain-
128AEAD in particular.

4.2 Correlation Attacks

Grain-128a was designed to resist conventional (fast) correlation attacks that
exploit correlations between the state of the LFSR and the corresponding key
stream. There has been devised a fast correlation attack on small state Grain-like
stream ciphers in [49]. Due a much bigger state, this attack does not apply to
Grain-128a. On the other hand, a recent paper [46] reveals that there are multiple
linear approximations in Grain-128a that together with a viewpoint based on a
finite field allow a fast correlation attack on the raw encryption mode of Grain-
128a (and on the other members of the Grain family), where every keystream
bit is assumed to be accessible by an opponent. This attack recovers the state
of Grain-128a with data and time complexity of about 2114. The data needs to
come from the same secret key and the same IV.

It should be noted that this fast correlation attack does not apply to Grain-
128a in authentication mode, as then only every second key stream bit may be
accessible to an opponent. Thus, it does not apply to Grain-128AEAD.

4.3 Chosen IV Attacks

A variety of chosen IV attacks on Grain have been proposed, in both fixed
key scenario as well as in the related key setting, and either for distinguishing
purpose or for key recovery. In a fixed key scenario, chosen IV attacks have
been devised on reduced-round versions using conditional differentials and using
cube attacks, or combinations of both [22,38–40]. On Grain-128, a dynamic cube
attack has been developed that succeeds in finding the secret key for the full 256-
round initialization for a fraction of keys, [19]. Dynamic cube attacks have not
been successful on Grain-128a thus far. Most of these results are experimental
in nature, and do work only if the computational effort is practically feasible.

More recently, division property has been developed to improve cube attacks.
Division property is an iterated technique for integral distinguishers introduced
by Todo, in [45] and was applied initially to block ciphers. It turned out that it
also applies to the initialization of stream ciphers, not only for distinguishers but
also for key recovery. As opposed to conventional cube attacks, it can provide
theoretical results. The latest result on Grain-128a in this direction is a key
recovery on 184 initialization rounds, [47]. The data complexity is 295, and the
computational complexity corresponds to about 2110 operations.



An attack that reaches the largest number of initialization rounds of Grain-
128a in a fixed key scenario thus far is a conditional differential distinguishing
attack and reaches 195 initialization rounds, but it works only for a fraction of
all keys, [40].

The relevance of related key cryptanalysis of stream ciphers has been a sub-
ject of debate. A related key attack on Grain-128a in [18] recovers the secret key
with a computational complexity 296, requiring 296 chosen IVs and about 2104

keystream bits. It requires only 2 related keys. Another related key attack in [8]
recovers the secret key using 264 chosen IVs and 232 related keys, where these
figures need to be multiplied by some factor (about 28).

4.4 Fault Attacks

In the scenario of fault attacks on stream ciphers, the attacker is allowed to
inject faults into the internal state, which means either flipping a binary value
in memory or assigning a value to zero. By analyzing the difference in keystreams
for the faulty and the fault-free case, one attempts to deduce the complete or
some partial information about the internal state or the secret key. Fault attacks
on stream ciphers have recently received some attention, starting with the work
of Hoch and Shamir [29]. The most common methods of injecting faults is by
using laser or through clock glitches. Fault attacks usually rely on assumptions
that is beyond the model of cryptanalysis and for this reason one can often
find rather efficient fault attacks on most ciphers. In some scenarios they are,
however, not unrealistic and the exact complexity and the related requirements
are of interest to study.

Fault attacks on the Grain family of stream ciphers were studied in [15] and
[36]. More recently, there was a number of papers providing improved attacks,
[5–7, 43]. In [43] the model is the most realistic one as it considers that the
cipher has to be re-initialized only a few times and faults are injected to any
random location and at any random clock cycle. No further assumptions are
needed over location and timing for injections. In the attack one constructs
algebraic equations based on the description of the cipher by introducing new
variables so that the degrees of the equations do not increase. Following algebraic
cryptanalysis, such equations based on both fault-free and faulty key-stream bits
are collected. Then a solving phase using the SAT Solver recovers the state of
any Grain member in minutes, For Grain v1, Grain-128 and Grain-128a, it uses
only 10, 4 and 10 injected faults, respectively.

We stress that we are not claiming resistance against fault attacks for Grain-
128AEAD. Rather, when fault attacks is a realistic threat, one has to implement
protection mechanisms against fault injection.

5 Implementation

Lightweight ciphers are important in constrained devices. A minimal design is
desirable, e.g., minimum area and very low power consumption since they often



must operate for an extended period of time, without a battery change. In some
cases, devices run without its own power supply, something that is often the case
with RFID tags.

Table 1. The gate count for different functions.

Function Gate Count

NAND2 1.0
NAND3 1.5
NAND4 2.0
XOR2 2.5
XOR3 6.5
Flip flop 8.0

Grain-128AEAD can be constructed using primitive hardware building blocks,
such as NAND gates, XOR gates and flip flops. In order to get an idea of the
hardware footprint related to an implementation of the cipher, we implement
the stream cipher using 65 nm library from ST Microelectronics, stm065v536.
For synthesis and power simulation, the Synopsys Design Compiler 2013.12 is
used. It can be noted that the result is highly dependent on what kind of gates
are available and how the tool utilizes the standard cells. We define a 2-input
NAND gate to have a gate count of 1 and other gate counts are given in relation
to this NAND gate. An excerpt from the standard-cell library documentation is
given in Table 1.

Table 2. Gate count for the different building blocks, for different levels of paralleliza-
tion, s.

Building Block
Gate Count

s = 1 s = 2 s = 32

LFSR 1024 1024 1024
NFSR 1024 1024 1024
f 19 38 608
g 62.5 125 2000
h 41.5 83 1328
Control logic 219.5 475.5 942.5
Accumulator 512 512 512
Register 512 512 512
Accumulator logic 224 224 4160

Total 3638.5 4017.5 12110.5



We synthesize the design and extract the gate count for each building block.
A summary of the gate count for each building block, and for different paral-
lelization levels, is given in Table 2. The control logic and accumulator logic is
extra circuitry and state machines for controlling the stream cipher, i.e., loading
key and IV, multiplexing data, etc.

The gate count remains constant during synthesis, but the physical area,
power and speed changes based on the optimization techniques employed. First,
we synthesize the design at clock frequency 100 kHz. The design is synthesized
for three levels of parallelization; 1, 2, and 32 times. The result is given in Table 3.

Table 3. Implementation results running at 100 kHz, for different levels of paralleliza-
tion.

Parallelization Area Power Throughput

1 4934 µm2 313 nW 50 kbit/s
2 5336 µm2 368 nW 100 kbit/s
32 16853 µm2 574 nW 1600 kbit/s

We also synthesize for the maximum possible speed, to achieve maximum
throughput, without constraints on area. The results are given in Table 4.

Table 4. Implementation results running at maximum possible speed, for different
levels of parallelization.

Parallelization Speed Area Power Throughput

1 1.12 GHz 5258 µm2 3.6 mW 560 Mbit/s
2 1.18 GHz 5629 µm2 4.3 mW 1.18 Gbit/s
32 662 MHz 17632 µm2 4.0 mW 10.59 Gbit/s

6 Conclusions

We have presented Grain-128AEAD, a new cipher in the Grain family. It is
closely based on Grain-128a and takes advantage of the well-analyzed design
principle behind the Grain stream ciphers. By making slight modifications to
Grain-128a, the cipher meets the requirements in the NIST lightweight standard-
ization process, providing 64-bit MAC, 128-bit key and 96-bit IV. The hardware
footprint makes the cipher well suited for constrained environments, but the
design is flexible enough to allow for also very high speed requirements at the
expense of additional hardware.
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A Test Vectors

Here, we give some test vectors for different keys, IVs, and messages. The test
vectors are given in hexadecimal, e.g., the key

0x01234FFFFFFFFFFFFFFFFFFFFFFFFFFF

corresponds to

(k0, ..., k127) = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, ..., 1).

The message stream is given with the padding included. A padding bit of
1 equals a padding byte of 0x80. Note that for an empty message, the message
stream is just the padding.

Key: 0x00000000000000000000000000000000

IV: 0x000000000000000000000000

Keystream: 0xc800a52f948b89b85cee6cfd8571f90f

Message: 0x80

Tag: 0xaab555c073e67664

Key: 0x0123456789abcdef123456789abcdef0

IV: 0x0123456789abcdef12345678

Keystream: 0xc2b918c6baf6dea0865200d46858a37b

Message: 0xFF80

Tag: 0x782f4c4a8907ba7f


